摘要: 概述不完全信息博弈:对其他参与人的特征、策略空间及收益函数信息了解的不够准确、或者不是对所有参与人的特征、策略空间及收益函数都有准确的准确信息,在这种情况下进行的博弈就是不完全信息博弈。 博弈动态、静态分析 不完全信息动态博弈:精炼贝叶斯均衡 精炼贝叶斯(纳什)均衡是不完全信息动态博弈的均衡概念。 在市场进入博弈中,精炼贝叶斯均衡是:在位企业产品定价较高,潜在企业推断其为高成本,选择进入;在位企业产品定价较低,潜在企业推断其为低成本,选择不进入。 不完全信息静态博弈:贝叶斯均衡 [阅读全文:]
摘要: 概述完全信息博弈:是指每一参与者都拥有所有其他参与者的特征、策略集及得益函数等方面的准确信息的博弈。 关于完全信息博弈的最早结果出现在1950年代,但确切出自何人之手却无从得知,这就是所谓的“佚名定理”(the Folk Theorem)。该定理认为,重复博弈的策略均衡结局与一次性博弈中的可行的个体理性结局恰好相一致,这个结局可被视为把多阶段非合作行为与一次性博弈的合作行为联系在一起。或者可以说,只要行为人有足够的耐心,任何满足个体理性的可行支付都可以通过一个特定的子博弈精炼均衡达到。然而,虽然[阅读全文:]
摘要: 应用乌鸦悖论 利用这个原理,这个悖论就不会出现了。如果有人随机选一个苹果,那么他看到一个红苹果的几率和「乌鸦」的颜色是完全没有关系的。这时分子等于分母,所以分数等于1,所以以上讨论的几率不会改变。所以看见一只红色的苹果不会增加人们对「乌鸦都是黑色的」的信任度。[1] 而如果那人是随叫随到选择一个非黑的物件,那个物件正好是一个红的苹果,那么我们对得到一个分子大于分母的,几乎等于一的假分数。所以在这个情况下,看见一只红苹果确实会极微小地增加我们对「乌鸦都是黑色的」的信任度。 其实,随着[阅读全文:]
摘要: 概述 什么是博弈论? 博弈论高级学术著作《博弈圣经》 博弈论的定义 博弈论的定义:Definition of the game theory: 我们把动物利用大自然移动的瘾魂,在决策人期待的空间里,形成相对均衡的语文学理论,称为博弈论。 (摘自《博弈圣经》中《人类未知的蓝色档案》一文)。 The theory of relative balance about the mobile addicts and soul of animals in the nature [阅读全文:]
摘要: 概述 阿拉巴马悖论(Alabama paradox)是指增加议席也可能反而导致某些名单丧失议席,是一种以“相对公平”为标准的份额分配法中的悖论。 阿拉巴马悖论(Alabama paradox) 增加议席也可能反而导致某些名单丧失议席,是一种以“相对公平”为标准的份额分配法中的悖论。 名额分配问题(assignment problem of the number of deputies to be&nb[阅读全文:]
摘要: 【阿基里斯悖论内容】 公元前5世纪,芝诺发表态了著名的阿基里斯和乌龟赛跑悖论:他提出让乌龟在阿基里斯前面 1000米处开始,并且假定阿基里斯的速度是乌龟的10倍。当比赛开始后,若阿基里斯跑了1000米,设所用的时间为t,此时乌龟便领先他100米;当阿基里斯跑完下一个100米时,他所用的时间为t/10,乌龟仍然前于他10米。当阿基里斯跑完下一个10米时,他所用的时间为t/100,乌龟仍然前于他10米……芝诺解说,阿基里斯能够继续逼近乌龟,但决不可能追上它。关于阿基里斯悖论的另一个解释是:阿基里斯[阅读全文:]
摘要: 简介 埃尔斯伯格悖论1954年,萨维奇(L.J.Savage)由直觉的偏好关系推导出概率测度,从而得到一个由效用和主观概率来线性规范人们行为选择的主观期望效用理论。他认为该理论是用来规范人们行为的,理性人的行为选择应该和它保持一致性。在他的理论中,有一个饱受争议的确凿性原则(The Sure-Thing Principie),它表明行为中间的优先不取决于对两个行为有完全等同结果的状态,只要两个行为在某种情形之外是一致的,那么在这种情形之外发生的变化肯定不会影响此情形下行为人对两个行动的偏爱次序[阅读全文:]
摘要: 简介 1952年,法国经济学家、诺贝尔经济学奖获得者阿莱作了一个著名的实验: 阿莱悖论对100人测试所设计的赌局: 赌局A:100%的机会得到100万元。 赌局B:10%的机会得到500万元,89%的机会得到100万元,1%的机会什么也得不到。 实验结果:绝大多数人选择A而不是B。即赌局A的期望值(100万元)虽然小于赌局B的期望值(139万元),但是A的效用值大于B的效用值, 即1.00U(1m) > 0.89U(1m) + 0.01U(0) + 0.1U(5m)。 [阅读全文:]
摘要: 阿罗的不可能定理 定义 阿罗不可能定理(Arrow'simpossibilitytheorem,阿罗的不可能性定理) 阿罗不可能性定理是指:如果众多的社会成员具有不同的偏好,而社会又有多种备选方案,那么在民主的制度下不可能得到令所有的人都满意的结果。定理是由1972年度诺贝尔经济学奖获得者美国经济学家肯尼思·J·阿罗提出。 背景资料 1951年肯尼斯·约瑟夫·阿罗(Kenneth J.Arrow)在他的现在已经成为经济学经典著作的《社会选择与个人价值》一书中,采用数学的公理化方法对通行[阅读全文:]