金融百科  > 所属分类  >  博弈论   
[0] 评论[0] 编辑

正则形式的博弈

目录

正则形式的博弈编辑本段

  在博弈论中,正则形式是描述博弈的一种方式。与延展形式不同,正则形式不用图形来描述博弈,而是用矩阵来陈述博弈。与延展形式的表述方式相比,这种方式在识别出严格优势策略纳什均衡上更有用,但会丢失某些信息。博弈的正则形式的表述方式包括如下部分:每个参与者所有显然的和可能的策略,以及和与其相对应的收益

  在非完美信息的完全静态博弈中,正则形式的表述方式详细地说明了参与者策略空间和收益函数。策略空间是某个参与者的所有可能策略的集合。策略是参与者在博弈的每个阶段——不管在博弈中这个阶段实际上是否会出现——将要采取的行动的完整计划。每个参与者的收益函数,是从参与者策略空间的向量积到该参与者收益集合(一般是实数集,数字表示基数效用或序数效用——在正则形式的表述方式中常常是基数效用)的映射。也就是说,参与者的收益函数把策略组合(所有参与者策略的清单)作为它的输入量,然后输出参与者的收益。

正则形式的使用编辑本段

占优策略

合作背叛
合作 2, 2 0, 3
背叛 3, 0 1, 1

  收益矩阵有助于剔除劣势策略,而且经常被用于说明这个概念。例如,在囚徒困境中(右图),参与者会发现因为其他人的背叛合作成了严格劣势策略。参与者会比较每列的第一个数字,在这个例子中,3>2且1>0。这表明无论横排参与者怎样选择,竖排参与者选择背叛都比较好些。类似地,参与者会比较每列的第二个数字,同样也是3>2且1>0。这说明无论竖排参与者怎么做,横排参与者选择背叛都比较好些。这就证明了此博弈唯一的纳什均衡是(背叛背叛)。

正则形式的连续博弈

一个连续博弈
左,左 左,右 右,左 右,右
4, 3 4, 3 -1, -1 -1, -1
0, 0 3, 4 0, 0 3, 4

  这些矩阵只表述同时(或者更一般地,信息不完美的)做出行动的博弈。上述矩阵不能表述甲先做出行动,被乙观察到,然后乙再做出行动的博弈。因为在这个例子中,无法确定乙每次的策略。为了表述这种连续博弈,我们要列出乙在博弈进行期间所有的行动——尽管根据实际情况,某种行动决不会出现。和前面一样,在这个博弈中乙有两种选择,。与前面不一样的是,视甲的行动不同而定,乙有四种策略。这些策略是:

  1. 如果甲选择顶,选择左;否则,选择左

  2. 如果甲选择顶,选择左;否则,选择右

  3. 如果甲选择顶,选择右;否则,选择左

  4. 如果甲选择定,选择右;否则,选择右

  右图是这个博弈的正则形式的表述方式。

通用公式编辑本段

  为了用把博弈表述成正则形式,需要提供下列数据:

  *表示参与者的有限集P,标记为{1,2,cdots,m}

  *每个参与者kP里拥有有限个纯策略.

  S_k = {1, 2, ldots, n_k}.

  一个纯策略组合是参与者策略的联合,这是一个m元组.

  vec{sigma} = (sigma_1, sigma_2, ldots,sigma_m)

  则有:

  sigma_1 in S_1, sigma_2 in S_2, ldots, sigma_m in S_m

  我们用sum来表示策略组合的集合

  收益函数形如

  F: Sigma rightarrow mathbb{R}.

  其预期解释是博弈结束时给予单个参与者的奖品。相应地,为了完整地说明一个博弈,收益函数必须在参与者集 P= {1, 2, ..., m}中对每个参与者详细说明。

  定义:一个正则形式的博弈的结构形如

  (P, mathbf{S}, mathbf{F})

  这里 P = {1,2, ...,m}是参与者集合,

  mathbf{S}= (S_1, S_2, ldots, S_m)

  是纯策略集合的一个m元组,每个纯策略对应于一个参与者,而

  mathbf{F} = (F_1, F_2, ldots, F_m)

  是收益函数的m元组。

  没有理由在前面的讨论中,把参与者数量有限或每个参与者的策略有限的博弈排除在外。因为要用到泛函分析的技巧,关于有限博弈的研究非常艰深。

实例编辑本段

一个正则形式的博弈
乙选择左 乙选择右
甲选择顶 4, 3 -1, -1
甲选择底 0, 0 3, 4

  有种博弈是参与者同时(或至少在做出行动前不观察其他参与者的动作)做出行动,并按照上述已做出行动的组合获得收益。右边的矩阵是这种博弈得正则形式的表述方式。例如,如果甲做出行动“顶”,而乙做出行动“左”,则甲得到收收益4,乙得到收益3。在每个回合,第一个数字代表竖排参与者(此处为甲)的收益,第二个数字代表横排参与者(此处为乙)的收益。

其他表述方式

  对称博弈(其收益不是依赖于参与者选择的动作)常常被表述为只有一种收益,即竖排参与者的收益。例如,左右两边的收益矩阵表述的是同一个博弈。

两个参与者都有的
雄鹿 野兔
雄鹿 3, 3 0, 2
野兔 2, 0 2, 2
只有竖排的
雄鹿 野兔
雄鹿 3 0
野兔 2 2

附件列表


0

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。

如果您认为本词条还有待完善,请 编辑

上一篇 占优策略    下一篇 志愿者困境

相关标签

热门标签