金融百科  > 所属分类  >  统计   
[0] 评论[0] 编辑

累积概率

累积概率(Cumulative probability)

 

目录

什么是累积概率编辑本段


  累积概率是指在不确定分析中,当净现值期望值相对较低,需进一步了解项目经济效益发生在某一区间的可能性有多大,则应计算这个区间内所有可能取值的概率之和,即累积概率,用P(NPV≥0)表示。

累积概率曲线的意义编辑本段


 

  自Hazen 于1914 年首次提出累积概率公式以来, 统计学者已导出几十种经验累积概率公式,其中大部分可用下列通式表达

  P_m=P(X\le X_m)=\frac{m-0.3}{n+0.4} (1)

  式中摇Pm--大于或等于Xm 的累积频率; X--表示样品; m--样本从小到大的序号; n--样品个数。为了能够更加清楚地显示数据性质, 必须对累积概率值进行坐标变换, 如正态变换、Gamma 变换、Logistic 变换等。

  将变换后的坐标点{xm , φ(Pm )} (φ(Pm )(表示对Pm 进行变换) 投影在概率图上, 就得到
概率累积曲线(图1)。
Image:累积概率曲线斜率示意图.jpg

  累积概率曲线上相邻两点间的斜率

  Ki = ΔYi / ΔXi (2)

  式中摇Ki--(Xi ,Xi+1 ) 两点间的斜率;ΔYi--斜率纵向分量;ΔXi--斜率横向分量;当数据个数确定之后,对于累积概率曲线上相邻两点来说,驻Yi 是一个常量,因此(Xi ,Xi+1 ) 之间的斜率只与ΔXi 有关。ΔXi 越小,斜率越大,曲线越陡。

 

附件列表


您所在的用户组无法下载或查看附件

0

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。

如果您认为本词条还有待完善,请 编辑

上一篇    下一篇

相关标签

热门标签