金融百科  > 所属分类  >  经济理论   
[0] 评论[0] 编辑

期望效用函数理论

期望效用函数理论(Expected Utility Theory)

期望效用函数理论的定义

期望效用函数理论期望效用函数理论
期望效用函数理论是20世纪50年代,冯·纽曼和摩根斯坦(Von Neumann and Morgenstern)在公理化假设的基础上,运用逻辑和数学工具,建立了不确定条件下对理性人(rational actor)选择进行分析的框架。不过, 该理论是将个体和群体合而为一的。后来,阿罗和德布鲁(Arrow and Debreu)将其吸收进瓦尔拉斯均衡的框架中,成为处理不确定性决策问题的分析范式,进而构筑起现代微观经济学并由此展开的包括宏观、金融、计量等在内的宏伟而又优美的理论大厦。

期望效用函数

如果某个随机变量X以概率Pi取值xi,i=1,2,…,n,而某人在确定地得到xi时的效用为u(xi),那么,该随机变量给他的效用便是:
  
U(X) = E[u(X)] = P1u(x1) + P2u(x2) + ... + Pnu(xn)
  
其中,E[u(X)]表示关于随机变量X的期望效用。因此U(X)称为期望效用函数,又叫做冯·诺依曼—摩根斯坦效用函数(VNM函数)。另外,要说明的是期望效用函数失去了保序性,不具有序数性。

期望效用函数理论受到的主要挑战

EU理论及SEU理论描述了“理性人”在风险条件下的决策行为。但实际上人并不是纯粹的理性人,决策还受到人的复杂的心理机制的影响。因此,EU理论对人的风险决策的描述性效度一直受到怀疑。例如,EU理论难以解释阿莱悖论、Ellsberg悖论等现象;没有考虑现实生活中个体效用的模糊性、主观概率的模糊性;不能解释偏好的不一致性、非传递性、不可代换性、“偏好反转现象”、观察到的保险和赌博行为;现实生活中也有对EU理论中理性选择上的优势原则和无差异原则的违背;实际生活中的决策者对效用函数的估计也违背EU理论的效用函数。
  
另外,随着实验心理学的发展,预期效用理论在实验经济学的一系列选择实验中受到了一些“悖论”的挑战。实验经济学在风险决策领域所进行的实验研究最广泛采取的是彩票选择实验(lottery-choice experiments),即实验者根据一定的实验目标,在一些配对的组合中进行选择,这些配对的选择通常在收益值及赢得收益值的概率方面存在关联。通过实验经济学的论证,同结果效应、同比率效应、反射效应、概率性保险、孤立效应、偏好反转等“悖论”的提出对预期效用理论形成了重大冲击。

对期望效用函数理论的修正和扩展

研究者针对以上问题提出了以下几种使EU理论一般化的方式:
  
(1)Karmark(1978)提出主观权重效用(Subjectively Weighted Utility,SWU)的概念,用决策权重替代线性概率,这可以解释Allais问题和共同比率效应,但不能解释优势原则的违背;
  
(2)扩展性效用模型(generalized utility model)。该类模型的特点是针对同结果效应和同比率效应等,放松预期效用函数的线性特征,或对公理化假设进行重新表述,模型将用概率三角形表示的预期效用函数线性特征的无差异曲线,扩展成体现局部线性近似的扇行展开。这些模型没有给出度量效用的原则,但给出了效用函数的许多限定条件。
  
(3)Kahneman和Tversky(1979)引入系统的非传递性和不连续性的概念,以解决优势违背问题;
  
(4)“后悔”的概念被引入,以解释共同比率效应和偏好的非传递性;如Loomes和Sudgen(1982)所提出的“后悔模型”引入了一种后悔函数,将效用奠定在个体对过去“不选择”结果的心理体验上(放弃选择后出现不佳结果感到庆幸,放弃选择后出现更佳结果感到后悔),对预期效用函数进行了改写(仍然保持了线性特征)。
  
(5)允许决策权重随得益的等级和迹象变化,这是对SWU的进一步发展。
  
(6)非可加性效用模型(non-additivity utility model)这类模型主要针对埃尔斯伯格悖论,该模型认为概率在其测量上是不可加的

风险的主观态度

1.风险厌恶:u(E(x))>E(u(x)) 风险厌恶的效用函数是凹函数。如图1-1所示。
  
2. 风险偏好:u(E(x))<E(u(x)) 风险厌恶的效用函数是凸函数。如图1-2所示。
  
3. 风险中立:u(E(x))=E(u(x)) 风险厌恶的效用函数是条直线。如图1-3所示。

确定性等值

CE 被称作确定性等值(Certainty. Equivalent),即消费者为达到期望的效用水平所要求保证的财产水平。若某人的财富效用函数为u(x),而一个赌局对某人的效用为u(E(x)),则有一个CE值能够满足:u(CE)=u(E(x))。称CE为某人在该赌局中的确定性等值。

风险问题的解决——保险

保险市场的价格——保险金:若某人的财富数量为w,其财富效用函数为u(x),而一个赌局对某人的效用为u(E(x)),若有u(w-R)= u(E(x)),则称R为保险金。因为u(w-R)= u(CE),所以R=w-CE。
  
风险厌恶者是保险的需求者,同时也可以成为保险的供给者。

参考资料

1.http://wiki.mbalib.com/wiki/%E6%9C%9F%E6%9C%9B%E6%95%88%E7%94%A8%E6%A8%A1%E5%9E%8B

附件列表


0

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。

如果您认为本词条还有待完善,请 编辑

上一篇 契约理论    下一篇 圈层结构理论

相关标签

热门标签