费马大定理
什么是费马大定理
费马大定理也称费马最后定理(Le dernier théorème de Fermat),乃下述定理:
当整数n > 2时,关于x, y, z的不定方程:
xn + yn = zn.的整数解都是平凡解,即:
当n是偶数时:(0,±m,±m)或(±m,0,±m)
当n是奇数时:(0,m,m)或(m,0,m)或(m,-m,0)
这个定理,本来又称费马猜想﹝Fermat's conjecture﹞,由17世纪法国数学家皮埃尔·德·费马提出。费马在一本书的空位里写,他已找到一个绝妙证明,但书边没有足够的空位写下。但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁·怀尔斯(Andrew Wiles)和他的学生理查·泰勒(Richard Taylor)于1995年成功证明。证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明。而安德鲁·怀尔斯由于成功证明此定理,获得了2005年度邵逸夫奖的数学奖。
费马大定理的历史
1637年,费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法 ,可惜这里空白的地方太小,写不下(拉丁文原文: "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et generaliter nullam in infinitum ultra quadratum potestatem in duos eiusdem nominis fas est dividere cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.")毕竟费马没有写下证明,而他的其它猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣。数学家们的有关工作丰富了数论的内容,推动了数论的发展。
对很多不同的n,费马定理早被证明了。但数学家对一般情况在首二百年内仍一筹莫展。
1908年,德国佛尔夫斯克宣布以10万德国马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的「证明」。在一战之后,马克大幅贬值,该定理的魅力也大大地下降。
1983年,Gerd Faltings证明了Mordell猜测(Faltings' theorem),从而得出当n > 2时(n为整数),只存在有限组互质的a,b,c使得an + bn = cn。
1986年,Gerhard Frey 提出了“ε-猜想(Epsilon conjecture)”:若存在a,b,c使得an+bn=cn,即如果费马大定理是错的,则椭圆曲线:
y2 = x(x - an)(x + bn)
会是谷山-志村猜想的一个反例。 Frey的猜想随即被Kenneth Ribet证实。此猜想显示了费马大定理与椭圆曲线及模形式的密切关系。
1995年,怀尔斯和泰勒在一特例范围内证明了谷山志村猜想,Frey的椭圆曲线刚好在这一特例范围内,从而证明了费马大定理。
怀尔斯证明费马大定理的过程亦甚具戏剧性。他用了七年时间,在不为人知的情况下,得出了证明的大部分;然后于1993年6月在一个学术会议上宣布了他的证明,并瞬即成为世界头条。但在审批证明的过程中,专家发现了一个极严重的错误。怀尔斯和泰勒然后用了近一年时间尝试补救,终在1994年9月以一个之前怀尔斯抛弃过的方法得到成功,这部份的证明与岩泽理论有关。他们的证明刊在1995年的《数学年刊》(Annals of Mathematics)之上。
费马大定理的证明
费马大定理的证明牵濒不同范畴的数学学问,主要包括椭圆曲线和模形式。若打算阅读威尔斯的证明,那应先在线性代数及复分析两范畴上打好基本功,再转而阅读椭圆曲线和模形式的课本。
证明过程
1676年数学家根据费马的少量提示用无穷递降法证明n=4。1678年和1738年德国数学家莱布尼兹和瑞士数学家欧拉也各自证明n=4。1770年欧拉证明n=3。1823年和1825年法国数学家勒让德和德国数学家狄利克雷先后证明n=5。1832年狄利克雷试图证明n=7,却只证明了n=14。1839年法国数学家拉梅证明了n=7,随后得到法国数学家勒贝格的简化……19世纪贡献最大的是德国数学家库麦尔,他从1844年起花费20多年时间,创立了理想数理论,为代数数论奠下基础;库麦尔证明当n<100时除37、59、67三数外费马大定理均成立。
为推进费马大定理的证明,布鲁塞尔和巴黎科学院数次设奖。1908年德国数学家佛尔夫斯克尔临终在哥廷根皇家科学会悬赏10万马克,并充分考虑到证明的艰巨性,将期限定为100年。数学迷们对此趋之若鹜,纷纷把“证明”寄给数学家,期望凭短短几页初等变换夺取桂冠。德国数学家兰道印制了一批明信片由学生填写:“亲爱的先生或女士:您对费马大定理的证明已经收到,现予退回,第一个错误出现在第_页第_行。”
在解决问题的过程中,数学家们不但利用了广博精深的数学知识,还创造了许多新理论新方法,对数学发展的贡献难以估量。1900年,希尔伯特提出尚未解决的23个问题时虽未将费马大定理列入,却把它作为一个在解决中不断产生新理论新方法的典型例证。据说希尔伯特还宣称自己能够证明,但他认为问题一旦解决,有益的副产品将不再产生。“我应更加注意,不要杀掉这只经常为我们生出金蛋的母鸡。”
数学家就是这样缓慢而执着地向前迈进,直至1955年证明n<4002。大型计算机的出现推进了证明速度,1976年德国数学家瓦格斯塔夫证明n<125000,1985年美国数学家罗瑟证明n<41000000。但数学是严谨的科学,n值再大依然有限,从有限到无穷的距离漫长而遥远。
1983年,年仅29岁的德国数学家法尔廷斯证明了代数几何中的莫德尔猜想,为此在第20届国际数学家大会上荣获菲尔茨奖;此奖相当于数学界的诺贝尔奖,只授予40岁以下的青年数学家。莫德尔猜想有一个直接推论:对于形如的方程至多只有有限多组整数解。这对费马大定理的证明是一个有益的突破。从“有限多组”到“一组没有”还有很大差距,但从无限到有限已前进了一大步。
1955年日本数学家谷山丰提出过一个属于代数几何范畴的谷山猜想,德国数学家弗雷在1985年指出:如果费马大定理不成立,谷山猜想也不成立。随后德国数学家佩尔提出佩尔猜想,补足了弗雷观点的缺陷。至此,如果谷山猜想和佩尔猜想都被证明,费马大定理不证自明。
事隔一载,美国加利福尼亚大学伯克利分校数学家里比特证明了佩尔猜想。
1993年6月,英国数学家、美国普林斯顿大学教授安德鲁·怀尔斯在剑桥大学牛顿数学研究所举行了一系列代数几何学术讲演。在6月23日最后一次讲演《椭圆曲线、模型式和伽罗瓦表示》中,怀尔斯部分证明了谷山猜想。所谓部分证明,是指怀尔斯证明了谷山猜想对于半稳定的椭圆曲线成立——谢天谢地,与费马大定理相关的那条椭圆曲线恰好是半稳定的!这时在座60多位知名数学家意识到,困扰数学界三个半世纪的费马大定理被证明了!这一消息在讲演后不胫而走,许多大学都举行了游行和狂欢,在芝加哥甚至出动了警察上街维持秩序。
证明方法
五十年代日本数学家谷山丰首先提出一个有关椭圆曲线的猜想,后来由另一位数学家志村五郎加以发扬光大,当时没有人认为这个猜想与费马大定理有任何关联。在八十年代德国数学家佛列将谷山丰的猜想与费马定理联系在一起,而安德鲁·怀尔斯所做的正是根据这个关联论证出一种形式的谷山丰猜想是正确的,进而推出费马最后定理也是正确的。
这个结论由威利斯在1993年的6月21日於美国剑桥大学牛顿数学研究所的研讨会正式发表,这个报告马上震惊整个数学界,就是数学门墙外的社会大众也寄以无限的关注。不过怀尔斯的证明马上被检验出有少许的瑕疵,於是怀尔斯与他的学生又花了十四个月的时间再加以修正。1994年9月19日他们终於交出完整无瑕的解答,数学界的梦魇终於结束。1997年6月,怀尔斯在德国哥庭根大学领取了佛尔夫斯克尔奖。当年的十万法克约为两百万美金,不过怀尔斯领到时,只值五万美金左右,但安德鲁·怀尔斯已经名列青史,永垂不朽了。
用不定方程来表示,费马大定理即:当n > 2时,不定方程xn + yn = zn 没有xyz≠0的整数解。为了证明这个结果,只需证明方程x4 + y4 = z4 ,(x,y) = 1和方程xp + yp = zp ,(x,y) = (x,z) = (y,z) = 1(p是一个奇素数)均无xyz≠0的整数解。
n=4的情形已由莱布尼茨和欧拉解决。费马本人证明了p=3的情,但证明不完全。勒让德(1823)和狄利克雷(1825)证明了p=5的情形。1839年,拉梅证明了p=7的情形。1847年,德国数学家库默尔对费马猜想作出了突破性的工作。他创立了理想数论,这使得他证明了当p<100时,除了p=37,59,67这三个数以外,费马猜想都成立。后来他又进行深入研究,证明了对于上述三个数费马猜想也成立。在近代数学家中,范迪维尔对费马猜想作出重要贡献。他从本世纪20年代开始研究费马猜想,首先发现并改正了库默尔证明中的缺陷。在以后的30余年内,他进行了大量的工作,得到了使费马猜想成立一些充分条件。他和另外两位数学家共同证明了当p<4002时费马猜想成立。
现代数学家还利用大型电子计算器来探索费马猜想,使p 的数目有很大的推进。到1977年为止,瓦格斯塔夫证明了p<125000时,费马猜想成立。《中国数学会通讯》1987年第2期据国外消息报导,费马猜想近年来取得了惊人的研究成果:格朗维尔和希思—布龙证明了「对几乎所有的指数,费马大定理成立」。即若命N(x)表示在不超过x的整数中使费马猜想不成立的指数个数,则证明中用到了法尔廷斯(Faltings)的结果。另外一个重要结果是:费马猜想若有反例,即存在x>0,y>0,z>0,n>2,使xn + yn = zn ,则x > 101800000.
相关条目费马小定理
费马大定理也称费马最后定理(Le dernier théorème de Fermat),乃下述定理:
当整数n > 2时,关于x, y, z的不定方程:
xn + yn = zn.的整数解都是平凡解,即:
当n是偶数时:(0,±m,±m)或(±m,0,±m)
当n是奇数时:(0,m,m)或(m,0,m)或(m,-m,0)
这个定理,本来又称费马猜想﹝Fermat's conjecture﹞,由17世纪法国数学家皮埃尔·德·费马提出。费马在一本书的空位里写,他已找到一个绝妙证明,但书边没有足够的空位写下。但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁·怀尔斯(Andrew Wiles)和他的学生理查·泰勒(Richard Taylor)于1995年成功证明。证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明。而安德鲁·怀尔斯由于成功证明此定理,获得了2005年度邵逸夫奖的数学奖。
费马大定理的历史
1637年,费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法 ,可惜这里空白的地方太小,写不下(拉丁文原文: "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et generaliter nullam in infinitum ultra quadratum potestatem in duos eiusdem nominis fas est dividere cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.")毕竟费马没有写下证明,而他的其它猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣。数学家们的有关工作丰富了数论的内容,推动了数论的发展。
对很多不同的n,费马定理早被证明了。但数学家对一般情况在首二百年内仍一筹莫展。
1908年,德国佛尔夫斯克宣布以10万德国马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的「证明」。在一战之后,马克大幅贬值,该定理的魅力也大大地下降。
1983年,Gerd Faltings证明了Mordell猜测(Faltings' theorem),从而得出当n > 2时(n为整数),只存在有限组互质的a,b,c使得an + bn = cn。
1986年,Gerhard Frey 提出了“ε-猜想(Epsilon conjecture)”:若存在a,b,c使得an+bn=cn,即如果费马大定理是错的,则椭圆曲线:
y2 = x(x - an)(x + bn)
会是谷山-志村猜想的一个反例。 Frey的猜想随即被Kenneth Ribet证实。此猜想显示了费马大定理与椭圆曲线及模形式的密切关系。
1995年,怀尔斯和泰勒在一特例范围内证明了谷山志村猜想,Frey的椭圆曲线刚好在这一特例范围内,从而证明了费马大定理。
怀尔斯证明费马大定理的过程亦甚具戏剧性。他用了七年时间,在不为人知的情况下,得出了证明的大部分;然后于1993年6月在一个学术会议上宣布了他的证明,并瞬即成为世界头条。但在审批证明的过程中,专家发现了一个极严重的错误。怀尔斯和泰勒然后用了近一年时间尝试补救,终在1994年9月以一个之前怀尔斯抛弃过的方法得到成功,这部份的证明与岩泽理论有关。他们的证明刊在1995年的《数学年刊》(Annals of Mathematics)之上。
费马大定理的证明
费马大定理的证明牵濒不同范畴的数学学问,主要包括椭圆曲线和模形式。若打算阅读威尔斯的证明,那应先在线性代数及复分析两范畴上打好基本功,再转而阅读椭圆曲线和模形式的课本。
证明过程
1676年数学家根据费马的少量提示用无穷递降法证明n=4。1678年和1738年德国数学家莱布尼兹和瑞士数学家欧拉也各自证明n=4。1770年欧拉证明n=3。1823年和1825年法国数学家勒让德和德国数学家狄利克雷先后证明n=5。1832年狄利克雷试图证明n=7,却只证明了n=14。1839年法国数学家拉梅证明了n=7,随后得到法国数学家勒贝格的简化……19世纪贡献最大的是德国数学家库麦尔,他从1844年起花费20多年时间,创立了理想数理论,为代数数论奠下基础;库麦尔证明当n<100时除37、59、67三数外费马大定理均成立。
为推进费马大定理的证明,布鲁塞尔和巴黎科学院数次设奖。1908年德国数学家佛尔夫斯克尔临终在哥廷根皇家科学会悬赏10万马克,并充分考虑到证明的艰巨性,将期限定为100年。数学迷们对此趋之若鹜,纷纷把“证明”寄给数学家,期望凭短短几页初等变换夺取桂冠。德国数学家兰道印制了一批明信片由学生填写:“亲爱的先生或女士:您对费马大定理的证明已经收到,现予退回,第一个错误出现在第_页第_行。”
在解决问题的过程中,数学家们不但利用了广博精深的数学知识,还创造了许多新理论新方法,对数学发展的贡献难以估量。1900年,希尔伯特提出尚未解决的23个问题时虽未将费马大定理列入,却把它作为一个在解决中不断产生新理论新方法的典型例证。据说希尔伯特还宣称自己能够证明,但他认为问题一旦解决,有益的副产品将不再产生。“我应更加注意,不要杀掉这只经常为我们生出金蛋的母鸡。”
数学家就是这样缓慢而执着地向前迈进,直至1955年证明n<4002。大型计算机的出现推进了证明速度,1976年德国数学家瓦格斯塔夫证明n<125000,1985年美国数学家罗瑟证明n<41000000。但数学是严谨的科学,n值再大依然有限,从有限到无穷的距离漫长而遥远。
1983年,年仅29岁的德国数学家法尔廷斯证明了代数几何中的莫德尔猜想,为此在第20届国际数学家大会上荣获菲尔茨奖;此奖相当于数学界的诺贝尔奖,只授予40岁以下的青年数学家。莫德尔猜想有一个直接推论:对于形如的方程至多只有有限多组整数解。这对费马大定理的证明是一个有益的突破。从“有限多组”到“一组没有”还有很大差距,但从无限到有限已前进了一大步。
1955年日本数学家谷山丰提出过一个属于代数几何范畴的谷山猜想,德国数学家弗雷在1985年指出:如果费马大定理不成立,谷山猜想也不成立。随后德国数学家佩尔提出佩尔猜想,补足了弗雷观点的缺陷。至此,如果谷山猜想和佩尔猜想都被证明,费马大定理不证自明。
事隔一载,美国加利福尼亚大学伯克利分校数学家里比特证明了佩尔猜想。
1993年6月,英国数学家、美国普林斯顿大学教授安德鲁·怀尔斯在剑桥大学牛顿数学研究所举行了一系列代数几何学术讲演。在6月23日最后一次讲演《椭圆曲线、模型式和伽罗瓦表示》中,怀尔斯部分证明了谷山猜想。所谓部分证明,是指怀尔斯证明了谷山猜想对于半稳定的椭圆曲线成立——谢天谢地,与费马大定理相关的那条椭圆曲线恰好是半稳定的!这时在座60多位知名数学家意识到,困扰数学界三个半世纪的费马大定理被证明了!这一消息在讲演后不胫而走,许多大学都举行了游行和狂欢,在芝加哥甚至出动了警察上街维持秩序。
证明方法
五十年代日本数学家谷山丰首先提出一个有关椭圆曲线的猜想,后来由另一位数学家志村五郎加以发扬光大,当时没有人认为这个猜想与费马大定理有任何关联。在八十年代德国数学家佛列将谷山丰的猜想与费马定理联系在一起,而安德鲁·怀尔斯所做的正是根据这个关联论证出一种形式的谷山丰猜想是正确的,进而推出费马最后定理也是正确的。
这个结论由威利斯在1993年的6月21日於美国剑桥大学牛顿数学研究所的研讨会正式发表,这个报告马上震惊整个数学界,就是数学门墙外的社会大众也寄以无限的关注。不过怀尔斯的证明马上被检验出有少许的瑕疵,於是怀尔斯与他的学生又花了十四个月的时间再加以修正。1994年9月19日他们终於交出完整无瑕的解答,数学界的梦魇终於结束。1997年6月,怀尔斯在德国哥庭根大学领取了佛尔夫斯克尔奖。当年的十万法克约为两百万美金,不过怀尔斯领到时,只值五万美金左右,但安德鲁·怀尔斯已经名列青史,永垂不朽了。
用不定方程来表示,费马大定理即:当n > 2时,不定方程xn + yn = zn 没有xyz≠0的整数解。为了证明这个结果,只需证明方程x4 + y4 = z4 ,(x,y) = 1和方程xp + yp = zp ,(x,y) = (x,z) = (y,z) = 1(p是一个奇素数)均无xyz≠0的整数解。
n=4的情形已由莱布尼茨和欧拉解决。费马本人证明了p=3的情,但证明不完全。勒让德(1823)和狄利克雷(1825)证明了p=5的情形。1839年,拉梅证明了p=7的情形。1847年,德国数学家库默尔对费马猜想作出了突破性的工作。他创立了理想数论,这使得他证明了当p<100时,除了p=37,59,67这三个数以外,费马猜想都成立。后来他又进行深入研究,证明了对于上述三个数费马猜想也成立。在近代数学家中,范迪维尔对费马猜想作出重要贡献。他从本世纪20年代开始研究费马猜想,首先发现并改正了库默尔证明中的缺陷。在以后的30余年内,他进行了大量的工作,得到了使费马猜想成立一些充分条件。他和另外两位数学家共同证明了当p<4002时费马猜想成立。
现代数学家还利用大型电子计算器来探索费马猜想,使p 的数目有很大的推进。到1977年为止,瓦格斯塔夫证明了p<125000时,费马猜想成立。《中国数学会通讯》1987年第2期据国外消息报导,费马猜想近年来取得了惊人的研究成果:格朗维尔和希思—布龙证明了「对几乎所有的指数,费马大定理成立」。即若命N(x)表示在不超过x的整数中使费马猜想不成立的指数个数,则证明中用到了法尔廷斯(Faltings)的结果。另外一个重要结果是:费马猜想若有反例,即存在x>0,y>0,z>0,n>2,使xn + yn = zn ,则x > 101800000.
相关条目费马小定理
附件列表
词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。