金融百科  > 所属分类  >  经济   
[1] 评论[0] 编辑

相关系数

什么是相关系数
  相关表和相关图可反映两个变量之间的相互关系及其相关方向,但无法确切地表明两个变量之间相关的程度。
  著名统计学家卡尔·皮尔逊设计了统计指标——相关系数。相关系数是用以反映变量之间相关关系密切程度的统计指标。相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。
  依据相关现象之间的不同特征,其统计指标的名称有所不同。如将反映两变量间线性相关关系的统计指标称为相关系数(相关系数的平方称为判定系数);将反映两变量间曲线相关关系的统计指标称为非线性相关系数、非线性判定系数;将反映多元线性相关关系的统计指标称为复相关系数、复判定系数等。
相关系数的几种定义
  相关关系是一种非确定性的关系,相关系数是研究变量之间线性相关程度的量。由于研究对象的不同,相关系数有如下几种定义方式。
  简单相关系数:又叫相关系数或线性相关系数,一般用字母P 表示,是用来度量变量间的线性关系的量。
  复相关系数:又叫多重相关系数。复相关是指因变量与多个自变量之间的相关关系。例如,某种商品的季节性需求量与其价格水平、职工收入水平等现象之间呈现复相关关系。
  典型相关系数:是先对原来各组变量进行主成分分析,得到新的线性关系的综合指标,再通过综合指标之间的线性相关系数来研究原各组变量间相关关系。
">编辑]相关系数的性质
  (1)|\rho_{XY}| \le 1
  (2)定理: | ρXY | = 1的充要条件是,存在常数a,b,使得\rho \left\{ Y=a+bX \right\}=1
  相关系数ρXY取值在-1到1之问,ρXY = 0时,
  称X,Y不相关; | ρXY | = 1时,称X,Y完全相关,此时,X,Y之间具有线性函数关系; | ρXY | < 1时,X的变动引起Y的部分变动,ρXY的绝对值越大,X的变动引起Y的变动就越大, | ρXY | > 0.8时称为高度相关,当\rho^2_{XY}<0.09,即 | ρXY | < 0.3时,称为低度相关,其他为中度相关。
  (3)推论:若Y=a+bX,则有
  \rho_{XY}=\begin{cases} 1, & b>0 \\ 0, & b=0 \\ -1, & b<0 \end{cases}
  证明: 令E(X) = μ,D(X) = σ2
  则E(Y) = bμ + aD(Y) = b2σ2
  E(XY) = E(aX + bX2) = aμ + b(σ2 + μ2)
  Cov(X,Y) = E(XY) − E(X)E(Y) = bσ2
  若b≠0,则\rho=\frac{Cov(X,Y)}{\sqrt{D(X)} \sqrt{D(Y)}}= \frac{b\sigma^2}{\sigma |b| \sigma}=\begin{cases} 1, & b>0 \\ -1, & b<0 \end{cases}
  若b=0,则ρXY = 0。
相关系数的计算方法
  相关系数的公式如下:
  r=\frac{\sigma{xy}}{\sigma_x\sigma_y}  (1)
  \sigma{xy}=\sigma^2{xy}=\frac{\sum(x-\overline{x})(y-\overline{y})}{n}
  \sigma_x=\sqrt{\frac{\sum(x-\overline{x})^2}{n}}
  \sigma_y=\sqrt{\frac{\sum(y-\overline{y}^2)}{n}}
  r=\frac{\sum(x-\overline{x})(y-\overline{y})}{\sqrt{\sum(x-\overline{x})^2\sum(y-\overline{y})^2}}  (2)
  =\frac{n\sum xy-\sum x\sum y}{n\sum x^2-(\sum x)^2\cdot\sqrt{n\sum y^2-(\sum y)^2}}  (3)
  =\frac{n^2}{\frac{\sum x}{n}-\frac{\sum y}{n}}{\sqrt{n^2\cdot\sqrt n^2}}  (4)
  =\frac{\overline{xy}-\overline{x}\overline{y}}{\sqrt{\sum\overline{x^2}-(\overline{x})^2}\cdot\sqrt{\sum\overline{y^2}-(\overline{y})^2}}  (5)
  L_{xx}=\sum(x-\overline{x})^2=\sum x^2-\frac{(\sum x)^2}{n}
  L_{yy}\sum(y-\overline{y})^2=\sum y^2-\frac{(\sum y)^2}{n}
  L_{xy}=\sum(x-\overline{x})(y-\overline{y})=\sum xy-\frac{\sum x \sum y}{n}
  r=\frac{L_{xy}}{\sqrt{L_{xx}L_{yy}}}
  相关系数的值介于–1与+1之间,即–1≤r≤+1。其性质如下:
当r>0时,表示两变量正相关,r<0时,两变量为负相关。当|r|=1时,表示两变量为完全线性相关,即为函数关系。当r=0时,表示两变量间无线性相关关系。当0<|r|<1时,表示两变量存在一定程度的线性相关。且|r|越接近1,两变量间线性关系越密切;|r|越接近于0,表示两变量的线性相关越弱。一般可按三级划分:|r|<0.4为低度线性相关;0.4≤|r|<0.7为显著性相关;0.7≤|r|<1为高度线性相关。
  例:某财务软件公司在全国有许多代理商,为研究它的财务软件产品的广告投入与销售额的关系,统计人员随机选择10家代理商进行观察,搜集到年广告投入费和月平均销售额的数据,并编制成相关表,见表1:
  表1  广告费与月平均销售额相关表  单位:万元

  参照表1,可计算相关系数如表2:
r=\frac{n\sum xy-\sum x\sum y}{\sqrt{n\sum x^2-(\sum x)^2}\sqrt{n\sum y^2-(\sum y)^2}}=\frac{10\times 16679.09-346.2\times 422.5}{\sqrt{10\times 14304.52-346.2^2}\sqrt{10\times 19687.81-422.5^2}}=0.9942

  相关系数为0.9942,说明广告投入费与月平均销售额之间有高度的线性正相关关系。  
">编辑]相关系数的应用
  1.在概率论计算中的应用

  例1.若将一枚硬币抛n次,X表示n次试验中出现正面的次数,Y表示n次试验中出现反面的次数。计算ρXY
  解:由于X+Y=n,则Y=-X+n,根据相关系数的性质推论,得ρXY = − 1。
  例2.已知随机变量X、Y分别服从正态分布N(1,9),N(0,16)且X,Y的相关系数\rho_{XY}=-\frac{1}{2}
  设Z=\frac{X}{3}+\frac{Y}{2},求证X,Z相互独立。
  证明:由已知得E(X)=1,D(X)=9,E(Y)= 0,D(Y) = 16
  Cov(X,Y)=E(XY)-E(X)E(Y)=\rho_{XY} \bullet \sqrt{D(X)} \bullet \sqrt{D{Y}}=-6
  由于正态分布的随机变量的线性组合仍然服从正态分布,知Z是正态变量。
  根据数学期望的性质有E(Z)=E(\frac{1}{3}X+\frac{1}{2}Y)=\frac{1}{3}E(X)+\frac{1}{2}E(Y)=\frac{1}{3}+\frac{1}{2} \times 0 =\frac{1}{3}
  根据方差的性质有D(Z)=D(\frac{1}{3}X+\frac{1}{2}Y)=\frac{1}{9} D(X) + \frac{1}{4} D(Y) + 2 \times \frac{1}{3} \times \frac{1}{2} Cov(X,Y)=3Z \sim N(\frac{1}{3},3)
  E(XZ)=E(\frac{1}{3}X^2)+\frac{1}{2}XY)=\frac{1}{3}E(X^2) + \frac{1}{2} E(XY)
  由于 E(XY) = Cov(X,Y) + E(X)E(Y) = − 6,
  E(X2) = D(X) + 2 = 10
  E(XZ)=\frac{1}{3} \times 10 + \frac{1}{2} \times (-6) = \frac{1}{3}
  Cov(X,Z)=E(XZ)-E(X)E(Z)=\frac{1}{3}-1 \times \frac{1}{3}=0
  ρXZ = 0,X,Z不相关。
  由于正态随机变量的相互独立与互不相关等价,故X,Z相互独立。
  因此,一般情况下两个随机变量不相关不一定相互独立。不相关仅指随机变量之问没有线性关系,而相互独立则表明随机变量之间互不影响,没有关系。
  2.在企业物流上的应用

  【例】一种新产品上市。在上市之前,公司的物流部需把新产品合理分配到全国的10个仓库,新品上市一个月后,要评估实际分配方案与之前考虑的其他分配方案中,是实际分配方案好还是其中尚未使用的分配方案更好,通过这样的评估,可以在下一次的新产品上市使用更准确的产品分配方案,以避免由于分配而产生的积压和断货。表1是根据实际数据所列的数表。
Image:表1 产品分配方案评估.jpg
  通过计算,很容易得出这3个分配方案中,B的相关系数是最大的,这样就评估到B的分配方案比实际分配方案A更好,在下一次的新产品上市分配计划中,就可以考虑用B这种分配方法来计算实际分配方案。
  3.在聚类分析中的应用

  【例】如果有若干个样品,每个样品有n个特征,则相关系数可以表示两个样品问的相似程度。借此,可以对样品的亲疏远近进行距离聚类。例如9个小麦品种(分别用A1,A2,...,A9表示)的6个性状资料见表2,作相关系数计算并检验。
Image:表2 9个小麦品种的6个性状资料.jpg
  由相关系数计算公式可计算出6个性状间的相关系数,分析及检验结果见表3。由表3可以看出,冬季分蘖与每穗粒数之间呈现负相关(ρ = − 0.8982),即麦冬季分蘖越多,那么每穗的小麦粒数越少,其他性状之间的关系不显著。
Image:表3 6个性状间的相关系数.jpg
相关系数的缺点
  需要指出的是,相关系数有一个明显的缺点,即它接近于1的程度与数据组数n相关,这容易给人一种假象。因为,当n较小时,相关系数的波动较大,对有些样本相关系数的绝对值易接近于1;当n较大时,相关系数的绝对值容易偏小。特别是当n=2时,相关系数的绝对值总为1。因此在样本容量n较小时,我们仅凭相关系数较大就判定变量x与y之间有密切的线性关系是不妥当的。
  例如,就我国深沪两股市资产负债率与每股收益之间的相关关系做研究。发现1999年资产负债率前40名的上市公司,二者的相关系数为r=–0.6139;资产负债率后20名的上市公司,二者的相关系数r=0.1072;而对于沪、深全部上市公司(基金除外)结果却是,r沪=–0.5509,r深=–0.4361,根据三级划分方法,两变量为显著性相关。这也说明仅凭r的计算值大小判断相关程度有一定的缺陷。
参考文献
  1. ↑ 1.0 1.1 郭红霞.相关系数及其应用.武警工程学院学报.2010年3月,第26卷第2期
  2. ↑ 王爱莲.统计学.第七章 相关与回归分析.第一节 相关分析.西安石油大学.经济管理学院


附件列表


1

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。

如果您认为本词条还有待完善,请 编辑

上一篇 直觉主义    下一篇 相对剩余价值生产

相关标签

热门标签