随机抽样
简介
它的最大优点是在根据样本资料推论总体时,可用概率的方式客观地测量推论值的可靠程度,从而使这种推论建立在科学的基础上。正因为此,随机抽样在社会调查和社会研究中应用较广泛。常用的随机抽样方法主要有纯随机抽样、分层抽样、系统抽样、整群抽样、多阶段抽样等。分类
纯随机抽样
又称简单随机抽样。是最基本的抽样方法。分为重复抽样和不重复抽样。在重复抽样中,每次抽中的单位仍放回总体,样本中的单位可能不止一次被抽中。不重复抽样中,抽中的单位不再放回总体,样本中的单位只能抽中一次。社会调查采用不重复抽样。纯随机抽样的具体作法有:①抽签法。将总体的全部单位逐一作签,搅拌均匀后进行抽取。②随机数字表法。将总体所有单位编号,然后从随机数字表中一个随机起点(任一排或一列),开始从左向右或从右向左、向上或向下抽取,直到达到所需的样本容量为止。
纯随机抽样必须有一个完整的抽样框,即总体各单位的清单。总体太大时,制作这样的抽样框工作量巨大,加之有许多情况,使总体名单根本无法得到。故在大规模社会调查中很少采用纯随机抽样。
分层抽样
先依据一种或几种特征将总体分为若干个子总体,每一子总体称作一个层;然后从每层中随机抽取一个子样本,这些子样本合起来就是总体的样本。各层样本数的确定方法有 3种:①分层定比。即各层样本数与该层总体数的比值相等。例如,样本大小n=50,总体N=500,则n/N=0.1即为样本比例,每层均按这个比例确定该层样本数。②奈曼法。即各层应抽样本数与该层总体数及其标准差的积成正比。③非比例分配法。当某个层次包含的个案数在总体中所占比例太小时,为使该层的特征在样本中得到足够的反映,可人为地适当增加该层样本数在总体样本中的比例。但这样做会增加推论的复杂性。总体中赖以进行分层的变量为分层变量,理想的分层变量是调查中要加以测量的变量或与其高度相关的变量。分层的原则是增加层内的同质性和层间的异质性。常见的分层变量有性别、年龄、教育、职业等。分层随机抽样在实际抽样调查中广泛使用,在同样样本容量的情况下,它比纯随机抽样的精度高,此外管理方便,费用少,效度高。
系统抽样
又称等距抽样。是纯随机抽样的变种。在系统抽样中,先将总体从1~N相继编号,并计算抽样距离K=N/n。式中N为总体单位总数,n为样本容量。然后在1~K中抽一随机数k1,作为样本的第一个单位,接着取k1+K,k1+2K……,直至抽够n个单位为止。系统抽样要防止周期性偏差,因为它会降低样本的代表性。例如,军队人员名单通常按班排列,10人一班,班长排第 1名,若抽样距离也取10时,则样本或全由士兵组成或全由班长组成。
整群抽样
又称聚类抽样。先将总体按照某种标准分群,每个群为一个抽样单位,用随机的方法从中抽取若干群,抽中的样本群中所有单位都要进行调查。与分层抽样相反,整群抽样的分类原则是使群间异质性小,群内异质性大。分层抽样时各群(层)都有样本,整群抽样时只有部分群有样本。整群抽样只需列出入样群的单位,因此可节约大量财力、人力。整群抽样的代表性低于简单随机抽样。多阶段抽样
又称多级抽样。前 4种抽样方法均为一次性直接从总体中抽出样本,称为单阶段抽样。多阶段抽样则是将抽样过程分为几个阶段,结合使用上述方法中的两种或数种。例如,先用整群抽样法从北京市某中等学校中抽出样本学校,再用整群抽样法从样本学校抽选样本班级,最后用系统或纯随机抽样从样本班级的学生中抽出样本学生。当研究总体广泛且分散时,多采用多阶段抽样,以降低调查费用。但由于每级抽样都会产生误差,经多级抽样产生的样本,误差也相应增大。附件列表
词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。