离散型随机变量的数学期望

离散型

  离散型随机变量的一切可能的取值xi与对应的概率Pi(=xi)之积的和称为的数" />
金融百科  > 所属分类  >  统计   
[0] 评论[0] 编辑

数学期望


概述
  mathematical expectation

离散型随机变量的数学期望

离散型

  离散型随机变量的一切可能的取值xi与对应的概率Pi(=xi)之积的和称为的数学期望(设级数绝对收敛),记为E。随机变量最基本的数学特征之一。它反映随机变量平均取值的大小。又称期望或均值。如果随机变量只取得有限个值,称之为离散型随机变量的数学期望。它是简单算术平均的一种推广,类似加权平均。例如某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个孩子的家庭有3000个, 则此城市中任一个家庭中孩子的数目是一个随机变量,记为X,它可取值0,1,2,3,其中取0的概率为0.01,取1的概率为0.9,取2的概率为0.06,取3的概率为0.03,它的数学期望为0×0.01+1×0.9+2×0.06+3×0.03等于1.11,即此城市一个家庭平均有小孩1.11个,用数学式子表示为:E(X)=1.11。

连续型

  连续型随机变量X的概率密度函数为f(x),若积分:

绝对收敛,则称此积分值为随机变量X的数学期望,记为:

数学期望的定义

定义1:

  

数学期望

按照定义,离散随机变量的一切可能取值与其对应的概率P的乘积之和称为数学期望,记为E.如果随机变量只取得有限个值:x,y,z,...则称该随机变量为离散型随机变量。

定义2:

  1 决定可靠性的因素常规的安全系数是根据经验而选取的,即取材料的强度极限均值(概率理论中称为数学期望)与工作应力均值(数学期望)之比计算

随机变量的数学期望值

  在概率论

数学期望

和统计学中,一个离散性随机变量的期望值(或数学期望、或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和。换句话说,期望值是随机试验在同样的机会下重复多次的结果计算出的等同“期望”的平均值。需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。(换句话说,期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。)

单独数据的数学期望值算法

  对于数学期望的定义是这样的。数学期望
  E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn)
  X1,X2,X3,……,Xn为这几个数据,p(X1),p(X2),p(X3),……p(Xn)为这几个数据的概率函数。在随机出现的几个数据中p(X1),p(X2),p(X3),……p(Xn)概率函数就理解为数据X1,X2,X3,……,Xn出现的频率f(Xi).则:
  E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) = X1*f1(X1) + X2*f2(X2) + …… + Xn*fn(Xn)
  很

北京大学数学教学系列丛书

容易证明E(X)对于这几个数据来说就是他们的算术平均值。
  我们举个例子,比如说有这么几个数:
  1,1,2,5,2,6,5,8,9,4,8,1
  1出现的次数为3次,占所有数据出现次数的3/12,这个3/12就是1所对应的频率。同理,可以计算出f(2) = 2/12,f(5) = 2/12 , f(6) = 1/12 , f(8) = 2/12 , f(9) = 1/12 , f(4) = 1/12 根据数学期望的定义:
  E(X) = 1*f(1) + 2*f(2) + 5*f(5) + 6*f(6) + 8*f(8) + 9*f(9) + 4*f(4) = 13/3
  所以 E(X) = 13/3,
  现在算这些数的算术平均值:
  Xa = (1+1+2+5+2+6+5+8+9+4+8+1)/12 = 13/3
  所以E(X) = Xa = 13/3

附件列表


0

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。

如果您认为本词条还有待完善,请 编辑

上一篇 数值平均数    下一篇 数灵学

相关标签

热门标签