作 者:罗斯(SheldonM.Ross)
  出版社: 人民邮电出版社
  出版时间: 2011年2月1日
  ISBN: 9787115" />
金融百科  > 所属分类  >  统计   
[0] 评论[0] 编辑

应用随机过程概率模型导论


图书信息
  书 名: 应用随机过程:概率模型导论

作 者:罗斯(SheldonM.Ross)
  出版社: 人民邮电出版社
  出版时间: 2011年2月1日
  ISBN: 9787115247070
  开本: 16开
  定价: 99.00元内容介绍
  本书是国际知名统计学家Sheldon M.Ross所著的关于基础概率理论和随机过程的经典教材,被加州大学伯克利分校、哥伦比亚大学、普度大学、 密歇根大学、俄勒冈州立大学、华盛顿大学等众多国外知名大学所采用。与其他随机过程教材相比,本书非常强调实践性,内含极其丰富的例子和习题,涵盖了众多学科的各种应用;作者富于启发而又不失严密性的叙述方式,有助于读者建立概率思维方式,培养对概率理论、随机过程的直观感觉。对那些需要将概率理论应用于精算学、运筹学、物理学、工程学、计算机科学、管理学和社会科学的读者,本书是一本极好的教材或参考书。本书目录
  1 Introduction to Probability Theory 1
  1.1 Introduction 1
  1.2 Sample Space and Events 1
  1.3 Probabilities Defined on Events 4
  1.4 Conditional Probabilities 7
  1.5 Independent Events 10
  1.6 Bayes' Formula 12
  Exercises 15
  References 21
  2 Random Variables 23
  2.1 Random Variables 23
  2.2 Discrete Random Variables 27
  2.3 Continuous Random Variables 34
  2.4 Expectation of a Random Variable 38
  2.5 Jointly Distributed Random Variables 43
  2.6 Moment Generating Functions 64
  2.7 Limit Theorems 77
  2.8 Stochastic Processes 83
  Exercises 85
  References 96
  3 Conditional Probability and Conditional Expectation 97
  3.1 Introduction 97
  3.2 The Discrete Case 97
  3.3 The Continuous Case 102
  3.4 Computing Expectations by Conditioning 105
  3.5 Computing Probabilities by Conditioning 119
  3.6 Some Applications Exercises 136
  Exercises 161
  4 Markov Chains 181
  4.1 Introduction 181
  4.2 Chapman-Kolmogorov Equations 185
  4.3 Classification of States 189
  4.4 Limiting Probabilities 200
  4.5 Some Applications 213
  4.6 Mean Time Spent in Transient States 226
  4.7 Branching Processes 228
  4.8 Time Reversible Markov Chains 232
  4.9 Markov Chain Monte Carlo Methods 243
  4.10 Markov Decision Processes 248
  Exercises 252
  References 268
  5 The Exponential Distribution and the Poisson Process 269
  5.1 Introduction 269
  5.2 The Exponential Distribution 270
  5.3 The Poisson Process 288
  5.4 Generalizations of the Poisson Process 316
  Exercises 330
  References 348
  6 Continuous-Time Markov Chains 349
  6.1 Introduction 349
  6.2 Continuous-Time Markov Chains 350
  6.3 Birth and Death Processes 352
  6.4 The Transition Probability Function Pij (t) 359
  6.5 Limiting Probabilities 368
  6.6 Time Reversibility 376
  6.7 Uniformization 384
  6.8 Computing the Transition Probabilities 388
  Exercises 390
  References 399
  7 Renewal Theory and Its Applications 401
  7.1 Introduction 401
  7.2 Distribution of N(t) 403
  7.3 Limit Theorems and Their Applications 407
  7.4 Renewal Reward Processes 416
  7.5 Regenerative Processes 425
  7.6 Semi-Markov Processes 434
  7.7 The Inspection Paradox 437
  7.8 Computing the Renewal Function 440
  7.9 Applications to Patterns 443
  7.10 The Insurance Ruin Problem 455
  Exercises 460
  References 472
  8 Queueing Theory 475
  8.1 Introduction 475
  8.2 Preliminaries 476
  8.3 Exponential Models 480
  8.4 Network of Queues 496
  8.5 The System M/G/1 507
  8.6 Variations on the M/G/1 510
  8.7 The Model G/M/1 519
  8.8 A Finite Source Model 525
  8.9 Multiserver Queues 528
  Exercises 534
  References 546
  9 Reliability Theory 547
  9.1 Introduction 547
  9.2 Structure Functions 547
  9.3 Reliability of Systems of Independent Components 554
  9.4 Bounds on the Reliability Function 559
  9.5 System Life as a Function of Component Lives 571
  9.6 Expected System Lifetime 580
  9.7 Systems with Repair 586
  Exercises 593
  References 600
  10 Brownian Motion and Stationary Processes 601
  10.1 Brownian Motion 601
  10.2 Hitting Times, Maximum Variable, and the Gambler's Ruin Problem 605
  10.3 Variations on Brownian Motion 607
  10.4 Pricing Stock Options 608
  10.5 White Noise 620
  10.6 Gaussian Processes 622
  10.7 Stationary andWeakly Stationary Processes 625
  10.8 Harmonic Analysis of Weakly Stationary Processes 630
  Exercises 633
  References 638
  11 Simulation 639
  11.1 Introduction 639
  11.2 General Techniques for Simulating Continuous Random Variables 644
  11.3 Special Techniques for Simulating Continuous Random Variables 653
  11.4 Simulating from Discrete Distributions 661
  11.5 Stochastic Processes 668
  11.6 Variance Reduction Techniques 679
  11.7 Determining the Number of Runs 696
  11.8 Coupling from the Past 696
  Exercises 699
  References 707
  Appendix: Solutions to Starred Exercises 709
  Index 749作者介绍
  国际知名统计学家,加州大学伯克利分校工业工程与运筹系教授。毕业于斯坦福大学统计系。研究领域包括:随机模型、仿真模拟、统计分析、金融数学等。罗斯教授是多本畅销数学和统计教材的作者。

附件列表


0

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。

如果您认为本词条还有待完善,请 编辑

上一篇 幸福感指数    下一篇 建筑总产值

相关标签

热门标签