最优控制理论
最优控制理论是现代控制理论的一个主要分支,着重于研究使控制系统的性能指标实现最优化的基本条件和综合方法。
最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科。它是现代控制理论的重要组成部分。这方面的开创性工作主要是由贝尔曼(R.E.Bellman)提出的动态规划和庞特里亚金等人提出的最大值原理。这方面的先期工作应该追溯到维纳(N.Wiener)等人奠基的控制论(Cybernetics)。1948年维纳发表了题为《控制论—关于动物和机器中控制与通讯的科学》的论文,第一次科学的提出了信息、反馈和控制的概念,为最优控制理论的诞生和发展奠定了基础。钱学森1954年所著的《工程控制论》(EngineeringCybernetics)直接促进了最优控制理论的发展和形成。
最优控制理论研究的内容 编辑本段
最优控制理论所研究的问题可以概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。这类问题广泛存在于技术领域或社会问题中。
例如,确定一个最优控制方式使空间飞行器由一个轨道转换到另一轨道过程中燃料消耗最少,选择一个温度的调节规律和相应的原料配比使化工反应过程的产量最多,制定一项最合理的人口政策使人口发展过程中老化指数、抚养指数和劳动力指数等为最优等,都是一些典型的最优控制问题。最优控制理论是50年代中期在空间技术的推动下开始形成和发展起来的。苏联学者Л.С.庞特里亚金1958年提出的极大值原理和美国学者R.贝尔曼1956年提出的动态规划,对最优控制理论的形成和发展起了重要的作用。线性系统在二次型性能指标下的最优控制问题则是R.E.卡尔曼在60年代初提出和解决的。
最优控制理论的基本思想与常用方法编辑本段
最优控制理论是现代控制理论中的核心内容之一,其主要实质是,在满足一定约束条件下寻求最优控制规律或控制策略,使得系统在规定的性能指标(目标函数)下具有最优值。
动态规划、最大值理论和变分法是最优控制理论的基本内容和常用方法。
动态规划是贝尔曼于二十世纪五十年代中期为解决多阶段决策过程而提出来的。这个方法的关键是建立在他所提出的“最优性原理”基础之上的,这个原理归结为用一组基本的递推关系式使过程连续的最优转移它可以求这样的最优解,这些最优解是以计算每个决策的后果并对今后的决策制定最优决策为基础的,但在求最优解时要按倒过来的顺序进行,即从最终状态开始到初始状态为止。
庞特亚金于1956—1958年间创立的最大值原理是经典最优控制理论的重要组成部分和控制理论发展史上的一个里程碑。它是解决最优控制问题的一种最普遍的有效方法。由于它放宽了求解问题的前提条件,使得许多古典变分法和动态规划法无法解决的工程技术问题得到了解决。
解决最优控制问题的主要方法 编辑本段
为了解决最优控制问题,必须建立描述受控运动过程的运动方程,给出控制变量的允许取值范围,指定运动过程的初始状态和目标状态,并且规定一个评价运动过程品质优劣的性能指标。通常,性能指标的好坏取决于所选择的控制函数和相应的运动状态。系统的运动状态受到运动方程的约束,而控制函数只能在允许的范围内选取。因此,从数学上看,确定最优控制问题可以表述为:在运动方程和允许控制范围的约束下,对以控制函数和运动状态为变量的性能指标函数(称为泛函)求取极值(极大值或极小值)。解决最优控制问题的主要方法有古典变分法、极大值原理和动态规划。
一、古典变分法
研究对泛函求极值的一种数学方法。古典变分法只能用在控制变量的取值范围不受限制的情况。在许多实际控制问题中,控制函数的取值常常受到封闭性的边界限制,如方向舵只能在两个极限值范围内转动,电动机的力矩只能在正负的最大值范围内产生等。因此,古典变分法对于解决许多重要的实际最优控制问题,是无能为力的。
二、极大值原理
极大值原理,是分析力学中哈密顿方法的推广。极大值原理的突出优点是可用于控制变量受限制的情况,能给出问题中最优控制所必须满足的条件。
三、动态规划
动态规划是数学规划的一种,同样可用于控制变量受限制的情况,是一种很适合于在计算机上进行计算的比较有效的方法。
最优控制理论已被应用于综合和设计最速控制系统、最省燃料控制系统、最小能耗控制系统、线性调节器等。
最优化技术 编辑本段
最优控制的实现离不开最优化技术,最优化技术是研究和解决最优化问题的一门学科,它研究和解决如何从一切可能的方案中寻找最优的方案。也就是说,最优化技术是研究和解决如何将最优化问题表示为数学模型以及如何根据数学模型尽快求出其最优解这两大问题。一般而言,用最优化方法解决实际工程问题可分为三步进行:
①根据所提出的最优化问题,建立最优化问题的数学模型,确定变量,列出约束条件和目标函数;
②对所建立的数学模型进行具体分析和研究,选择合适的最优化方法;
③根据最优化方法的算法列出程序框图和编写程序,用计算机求出最优解,并对算法的收敛性、通用性、简便性、计算效率及误差等作出评价。
最优化问题的基本求解方法 编辑本段
所谓最优化问题,就是寻找一个最优控制方案或最优控制规律,使系统能最优地达到预期的目标。在最优化问题的数学模型建立后,主要问题是如何通过不同的求解方法解决寻优问题。一般而言,最优化方式有离线静态优化方式和在线动态优化方式,而最优化问题的求解方法大致可分为四类:
1.解析法
对于目标函数及约束条件具有简单而明确的数学表达式的最优化问题,通常可采用解析法来解决。其求解方法是先按照函数极值的必要条件,用数学分析方法求出其解析解,然后按照充分条件或问题的实际物理意义间接地确定最优解。
2.数值解法(直接法)
对于目标函数较为复杂或无明确的数学表达式或无法用解析法求解的最优化问题,通常可采用直接法来解决。直接法的基本思想,就是用直接搜索方法经过一系列的迭代以产生点的序列,使之逐步接近到最优点。直接法常常是根据经验或实验而得到的。
3.解析与数值相结合的寻优方法
4.网络最优化方法
这种方法以网络图作为数学模型,用图论方法进行搜索的寻优方法。
优化方法的新进展 编辑本段
1.在线优化方法
基于对象数学模型的离线优化方法是一种理想化方法。这是因为尽管工业过程(对象)被设计得按一定的正常工况连续运行,但是环境的变动、触媒和设备的老化以及原料成分的变动等因素形成了对工业过程的扰动,因此原来设计的工况条件就不是最优的。
解决此类问题的常见方法。
(1)局部参数最优化和整体最优化设计方法
局部参数最优化方法的基本思想是:按照参考模型和被控过程输出之差来调整控制器可调参数,使输出误差平方的积分达到最小。这样可使被控过程和参考模型尽快地精确一致。
此外,静态最优与动态最优相结合,可变局部最优为整体最优。整体最优由总体目标函数体现。整体最优由两部分组成:一种是静态最优(或离线最优),它的目标函数在一段时间或一定范围内是不变的;另一种是动态最优(或在线最优),它是指整个工业过程的最优化。工业过程是一个动态过程,要让一个系统始终处于最优化状态,必须随时排除各种干扰,协调好各局部优化参数或各现场控制器,从而达到整个系统最优。
预测控制,又称基于模型的控制(Model-based Control),是70年代后期兴起的一种新型优化控制算法。但它与通常的离散最优控制算法不同,不是采用一个不变的全局优化目标,而是采用滚动式的有限时域优化策略。这意味着优化过程不是一次离线进行,而是反复在线进行的。这种有限化目标的局部性使其在理想情况下只能得到全局的次优解,但其滚动实施,却能顾及由于模型失配、时变、干扰等引起的不确定性,及时进行弥补,始终把新的优化建立在实际的基础之上,使控制保持实际上的最优。这种启发式的滚动优化策略,兼顾了对未来充分长时间内的理想优化和实际存在的不确定性的影响。在复杂的工业环境中,这比建立在理想条件下的最优控制更加实际有效。
预测控制的优化模式具有鲜明的特点:它的离散形式的有限优化目标及滚动推进的实施过程,使得在控制的全过程中实现动态优化,而在控制的每一步实现静态参数优化。用这种思路,可以处理更复杂的情况,例如有约束、多目标、非线性乃至非参数等。吸取规划中的分层思想,还可把目标按其重要性及类型分层,实施不同层次的优化。显然,可把大系统控制中分层决策的思想和人工智能方法引入预测控制,形成多层智能预测控制的模式。这种多层智能预测控制方法的,将克服单一模型的预测控制算法的不足,是当前研究的重要方向之一。
(3)稳态递阶控制
对复杂的大工业过程(对象)的控制常采用集散控制模式。这时计算机在线稳态优化常采用递阶控制结构。这种结构既有控制层又有优化层,而优化层是一个两级结构,由局部决策单元级和协调器组成。其优化进程是:各决策单元并行响应子过程优化,由上一级决策单元(协调器)协调各优化进程,各决策单元和协调器通过相互迭代找到最优解。这里必须提到波兰学者Findeisen等所作出的重要贡献。
由于工业过程较精确的数学模型不易求得,而且工业过程(对象)往往呈非线性及慢时变性,因此波兰学者Findesien提出:优化算法中采用模型求得的解是开环优化解。在大工业过程在线稳态控制的设计阶段,开环解可以用来决定最优工作点。但在实际使用上,这个解未必能使工业过程处于最优工况,相反还会违反约束。他们提出的全新思想是:从实际过程提取关联变量的稳态信息,并反馈至上一层协调器(全局反馈)或局部决策单元(局部反馈),并用它修正基于模型求出的的最优解,使之接近真实最优解。
(4)系统优化和参数估计的集成研究方法
稳态递阶控制的难点是,实际过程的输入输出特性是未知的。波兰学者提出的反馈校正机制,得到的只能是一个次优解。但其主要缺点在于一般很难准确估计次优解偏离最优解的程度,而且次优解的次优程度往往依赖于初始点的选取。一个自然的想法是将优化和参数估计分开处理并交替进行,直到迭代收敛到一个解。这样计算机的在线优化控制就包括两部分任务:在粗模型(粗模型通常是能够得到的)基础上的优化和设定点下的修正模型。这种方法称为系统优化和参数估计的集成研究方法。 (Integrated System Optimizationand Parameter Estimation)
2.智能优化方法
对于越来越多的复杂控制对象,一方面,人们所要求的控制性能不再单纯的局限于一两个指标;另一方面,上述各种优化方法,都是基于优化问题具有精确的数学模型基础之上的。但是许多实际工程问题是很难或不可能得到其精确的数学模型的。这就限制了上述经典优化方法的实际应用。随着模糊理论、神经网络等智能技术和计算机技术的发展。
近年来,智能式的优化方法得到了重视和发展。
(1)神经网络优化方法
人工神经网络的研究起源于1943年和Mc Culloch和Pitts的工作。在优化方面,1982年Hopfield首先引入Lyapuov能量函数用于判断网络的稳定性,提出了Hopfield单层离散模型;Hopfield和Tank又发展了Hopfield单层连续模型。1986年,Hopfield和Tank将电子电路与Hopfield模型直接对应,实现了硬件模拟;Kennedy和Chua基于非线性电路理论提出了模拟电路模型,并使用系统微分方程的Lyapuov函数研究了电子电路的稳定性。这些工作都有力地促进了对神经网络优化方法的研究。
根据神经网络理论,神经网络能量函数的极小点对应于系统的稳定平衡点,这样能量函数极小点的求解就转换为求解系统的稳定平衡点。随着时间的演化,网络的运动轨道在空间中总是朝着能量函数减小的方向运动,最终到达系统的平衡点——即能量函数的极小点。因此如果把神经网络动力系统的稳定吸引子考虑为适当的能量函数(或增广能量函数)的极小点,优化计算就从一初始点随着系统流到达某一极小点。如果将全局优化的概念用于控制系统,则控制系统的目标函数最终将达到希望的最小点。这就是神经优化计算的基本原理。
与一般的数学规划一样,神经网络方法也存在着重分析次数较多的弱点,如何与结构的近似重分析等结构优化技术结合,减少迭代次数是今后进一步研究的方向之一。
由于Hopfield模型能同时适用于离散问题和连续问题,因此可望有效地解决控制工程中普遍存在的混合离散变量非线性优化问题。
(2)遗传算法
遗传算法和遗传规划是一种新兴的搜索寻优技术。它仿效生物的进化和遗传,根据“优胜劣汰”原则,使所要求解决的问题从初始解逐步地逼近最优解。在许多情况下,遗传算法明显优于传统的优化方法。该算法允许所求解的问题是非线性的和不连续的,并能从整个可行解空间寻找全局最优解和次优解,避免只得到局部最优解。这样可以为我们提供更多有用的参考信息,以便更好地进行系统控制。同时其搜索最优解的过程是有指导性的,避免了一般优化算法的维数灾难问题。遗传算法的这些优点随着计算机技术的发展,在控制领域中将发挥越来越大的作用。
目前的研究表明,遗传算法是一种具有很大潜力的结构优化方法。它用于解决非线性结构优化、动力结构优化、形状优化、拓扑优化等复杂优化问题,具有较大的优势。
(3)模糊优化方法
最优化问题一直是模糊理论应用最为广泛的领域之一。
自从Bellman和L.A.zadeh在 70年代初期对这一研究作出开创性工作以来,其主要研究集中在一般意义下的理论研究、模糊线性规划、多目标模糊规划、以及模糊规划理论在随机规划及许多实际问题中的应用。主要的研究方法是利用模糊集的a截集或确定模糊集的隶属函数将模糊规划问题转化为经典的规划问题来解决。
模糊优化方法与普通优化方法的要求相同,仍然是寻求一个控制方案(即一组设计变量),满足给定的约束条件,并使目标函数为最优值,区别仅在于其中包含有模糊因素。普通优化可以归结为求解一个普通数学规划问题,模糊规划则可归结为求解一个模糊数学规划(fuzzymathematicalprogramming)问题。包含控制变量、目标函数和约束条件,但其中控制变量、目标函数和约束条件可能都是模糊的,也可能某一方面是模糊的而其它方面是清晰的。例如模糊约束的优化设计问题中模糊因素是包含在约束条件(如几何约束、性能约束和人文约束等)中的。求解模糊数学规划问题的基本思想是把模糊优化转化为非模糊优化即普通优化问题。方法可分为两类:一类是给出模糊解(fuzzysolution);另一类是给出一个特定的清晰解(crispsolution)。必须指出,上述解法都是对于模糊线性规划(fuzzylinearprogramming)提出的。然而大多数实际工程问题是由非线形模糊规划(fuzzynonlinearprogramming)加以描述的。于是有人提出了水平截集法、限界搜索法和最大水平法等,并取得了一些可喜的成果。
在控制领域中,模糊控制与自学习算法、模糊控制与遗传算法相融合,通过改进学习算法、遗传算法,按给定优化性能指标,对被控对象进行逐步寻优学习,从而能够有效地确定模糊控制器的结构和参数。
最优控制理论的案例分析编辑本段
案例一:最优控制理论在电力系统励磁控制中的应用
近年来,随着现代控制理论及其实际应用的不断发展,运用现代控制理论进行电力系统运行性能的最优化控制的研究工作有了迅速的发展,对如何按最优化的方法设计多参量的励磁调节器也取得了很大进展。
对于非线性系统的同步发电机而言,当它偏离系统工作点或系统发生较大扰动时,如果仍然采用基于PID技术的电力系统稳定器,就会出现误差。为此,可以将其用基于非线性最优控制技术的励磁调节器。但是,非线性最优控制调节器存在着对电压控制能力较弱的缺点,所以用一种能够将非线性最优励磁调节器和PID技术的电力系统稳定器有机结合的新型励磁调节器的设计原理。
此综合励磁调节器是利用非线性最优控制理论的研究成果,其在非线性的励磁控制中采用了精确线性化的数学方法,不存在平衡点线性化后的舍入误差,因此该控制的数学模型在理论上对发电机的所有运行点都是精确的;同时针对非线性的励磁控制调压能力较弱的特点,又增加了PID环节,使其具有较强的电压调节特性此装置在小机组试验中取得非常好的实验效果,在平衡点附近运行和偏离平衡点较多时都具有很好的调节特性。
将自适应控制理论与最优控制理论相结合,通过多变量参数辨识、最优反馈系数计算和控制算法运算三个环节,可以实现同步发电机励磁的自适应最优控制。
此发电机自适应最优励磁方案,通过采用由带可变遗忘因子的最小二乘算法构成的多变量实时辨识器,使系统状态方程的系数矩阵A和B中的元素值随系统运行工况的变化而变化,再经过最优反馈系数计算,实现了同步电机的自适应最优励磁控制。
虽然使用线性最优控制理论求取反馈系数,但由于状态方程的系数矩阵中的元素值随系统运行工况的变化而变化,因而控制作用体现了电力系统的非线性特性,本质上是一种非线性控制。
数字仿真试验结果表明,该励磁控制系统能够自动跟踪系统运行工作状况,在线辨识不断变化的系统参数,使控制作用始终处于最优状态。从而改善了控制系统的动态品质,可以提高电力系统运行的稳定性。
神经网络逆系统方法将神经网络对非线性函数逼近学习能力和逆系统方法的线性化能力相结合,构造出物理可实现的神经网络逆系统,从而实现了对被控系统的大范围线性化,能够在无需系统参数的情况下构造出伪线性复合系统,从而将非线性系统的控制问题转化为线性系的控制问题。
在大干扰情况下,神经网络逆系统方法的控制器暂态时间很短,超调量很小,有效地改善了系统的暂态响应品质,提高了电力系统的稳定性,此控制器还具有很好的鲁棒性能。另外,神经网络逆系统方法无需知道原系统的数学模型以及参数,,也不需要测量被控系统的状态量,仅需要知道被控系统可逆及输入输出微分方程的阶数,且结构简单,易于工程实现。
预测控制是一种计算机算法,它采用多步预测的方式增加了反映过程未来变化趋势的信息量,因而能克服不确定性因素和复杂变化的影响。灰色预测控制是预测控制的一个分支,它需建立灰微分方程,能较好地对系统作全面的分析。应用GM(1,N)对发电机的功率偏差、转速偏差、电压偏差序列值进行建模,经全面分析后求出各状态量的预测值,同时根据最优控制理论求出以预测值为状态变量的被控励磁控制系统的最优反馈增益,从而得出具有预测信息的最优励磁控制量。
灰色预测控制理论中灰色建模和“超前控制”的思想较好地弥补了线性最优控制理论中精确线性化和“事后控制”对单机无穷大系统的仿真结果表明,此励磁控制具有响应速度快、准确度高的特点,使电力系统在大小扰动下均能表现出较好的动态特性。
附件列表
词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。