Down Transition Probability
The probability that an asset's value will decline in one period’s time within the context of an option pricing model. The option pricing models using a down transition probability are both the binomial and trinomial option pricing models.
In a binomial option pricing model, the probability that an option's underlying asset declines in value over a time step may be denoted by 1-Qu, where Qu represents the probability that the option's underlying asset will increase over the next time step in decimal form.
Under the trinomial model, the probability of a down transition is equal to the probability of an upward transition or an equal transition over the next time step not happening. If we denote Qu as the probability of the underlying asset increasing in value over the next time step, Qd as the probability the value of the underlying asset will decrease over the next time step, then the probability that the underlying asset's value stays the same is 1-Qu-Qd.
In a binomial option pricing model, the probability that an option's underlying asset declines in value over a time step may be denoted by 1-Qu, where Qu represents the probability that the option's underlying asset will increase over the next time step in decimal form.
Under the trinomial model, the probability of a down transition is equal to the probability of an upward transition or an equal transition over the next time step not happening. If we denote Qu as the probability of the underlying asset increasing in value over the next time step, Qd as the probability the value of the underlying asset will decrease over the next time step, then the probability that the underlying asset's value stays the same is 1-Qu-Qd.
附件列表
词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
如果您认为本词条还有待完善,请 编辑
上一篇 Double Witching 下一篇 Down-and-In Option